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General-purpose (“software”)  

 The architecture of the computation engine used to implement a 
system’s desired functionality 

 Processor does not have to be programmable 

 “Processor” not equal to general-purpose processor 
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Processor technology 

total = 0; 

for (i = 0; i< N; i++)  

   total += M[i]; 
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 Processors vary in their customization for the problem at hand 
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Single-purpose processors 

• Digital circuit designed to execute exactly 

one program 
 a.k.a. coprocessor, accelerator or peripheral 

• Features 
 Contains only the components needed to 

execute a single program 

 No program memory 

• Benefits 
 Fast 

 Low power 
Small size 

• Drawbacks 

 No flexibility, high time-to-market, high NRE cost 
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Basic logic gates 

Combinational components 



10/28/2013 

4 

Sequential components 

Sequential Logic Design 
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Sequential Logic Design 

Single-purpose processor design 

Can be viewed as the design of a 

system with 2 components: 

• Datapath, which executes 

operations required to the 

system 

• Control Unit, which generates 

commands for datapath on 

the basis of data inputs and 

conditions 
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Sigle-purpose processor design 
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Single-purpose processor design 

flow 

 

1. Processor Specifications ( algorithmic 

description) 

2. Convert algorithm to “complex” state machine 
 Known as FSMD: finite-state machine with datapath 

 Can use templates to perform such conversion 

3. Datapath design 

4. Control unit design 
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Datapath design 

Datapath design uses a library of components 

Multiplexer 

Decoder 

Comparators 

ALUs 

Registers 

 

 

Datapath Design 

 The design the datapath requires, starting from the 
specifications of the system, the realization of a schematic 
that defines 

 the necessary components; 

 as components are connected; 

 the conditions and the results produced; 

 the control signals which must be produced by the control unit; 

 

 In designing the datapath is necessary to take account of 
some project constraints such as: 

 maximum latency 

 maximum area 

 maximum power 
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Datapath design 

 Create a register for any declared variable 

 Create a functional unit for each arithmetic operation 

 Connect the ports, registers and functional units 

 Based on reads and writes 

 Use multiplexors for multiple sources 

 Create unique identifier  

 for each datapath component control input and output 

Control Unit Design 

 Designing the control unit is equivalent to designing a 

finite state machine (FSM) 

 Identified states and control signals for the datapath, 

the design of the control unit can be realized using 

the methods of synthesis of synchronous sequential 

circuits 
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Example 

Specification:  

 

while(1) 

{while(start!=1); 

 {total = 0; 

   for (index = 0; index< N; index++)  

   total += M[index]; 

  } 

} 

Total=0 

Index=0 

Index<N 
Total=total+M[index) 

index=index+1 

Index==N 

Start==1 

Start!=1 

Example 

Initialize 

total=0 

index=0 

ADD 

total += M[index]; 

Index++ 

IDLE 

start==1 

Index< N 

FSM:  

start!=1 
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Single-purpose processors 
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Example: Least common multiple 

Specification 

 
while(true) 

 { Ready='1'; 

   do 

   while(start!='1'); 

   ma=A; mb=B; Ready='0'; 

   while(ma!=mb) 

    if(ma<mb)  

     ma=ma+A; 

   else 

       mb=mb+B; 

   Ris=ma; 

  } 

Example: Least common multiple 

To design the datapath the following blocks are required: 

 Registers  (ma, mb and Ris)  

 Comparatores for conditions (A!=B) and (A<B) 

 Adders for  ma=ma+A and for mb=mb+B 

 Multiplexer for selecting inputs of registers ma ( A or ma+A) 

using SelA or mb (B or mb+B) using  SelB 

AND port for clock and a write enable for registers ma 

(WriteA),  mb (writeB) and  Ris (WriteR) 
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Datapath Least common multiple 

Mux 
A 

Reg 
ma 

+ 

!= 

< 

Mux 
B 

Reg 
mb 

+ 

selA 

selB 

A 

B 

writeA clk 

writeB clk 

Not_equal 

less 

FSM(Moore): Least common multiple 

Idle 
s0 

Init 
s1 

Start='1' 

Compare 
s2 

 ma=ma+A 
s3 

mb=mb+B 
s4 

Ris=ma 
s5 

not_equal=='0' 

not_equal =='1' 
less=='1' 

not_equal =='1' 
less==‘0' 
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FSM: outputs 

S0 S1 S2 S3 S4 S5 

SelA - 0 1 1 1 1 

SelB - 0 1 1 1 1 

WriteA 0 1 0 1 0 0 

WriteB 0 1 0 0 1 0 

WriteR 0 0 0 0 0 1 

Ready 1 0 0 0 0 0 
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General-purpose processors 

• Programmable device used in a variety 
of applications 
 Also known as “microprocessor” 

• Features 
 Program memory 
 General datapath with large register file and 

general ALU 

• User benefits 
 Low time-to-market and NRE costs 
 High flexibility 

• Drawbacks 

 High unit cost 

 Low Performance 
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Basic architecture 

 Control unit and 

datapath 

 Note similarity to single-

purpose processor 

 Key differences 

 Datapath is general 

 Control unit doesn’t store 

the algorithm – the 

algorithm is 

“programmed” into the 

memory 

 

Datapath 

 Load 

 Read memory location 
into register  

• ALU operation 
– Input certain registers 

through ALU, store 
back in register 

• Store 
– Write register to 

memory location 
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Control Unit 

 Control unit: configures the datapath 
operations 

 Sequence of desired operations 
(“instructions”) stored in memory – 
“program”  

 Instruction cycle – broken into several 
sub-operations, each one clock cycle, 
e.g.: 

 Fetch: Get next instruction into IR 

 Decode: Determine what the instruction 
means 

 Fetch operands: Move data from 
memory to datapath register 

 Execute: Move data through the ALU 

 Store results: Write data from register 
to memory 

Control Unit  sub - operation 

 Fetch 

 Get next instruction 

into IR 

 PC: program 

counter, always 

points to next 

instruction 

 IR: holds the 

fetched instruction 
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Control Unit  sub - operation 

 Decode 

 Determine what the 

instruction means 

Control Unit sub - operation 

 Fetch operands 

 Move data from 

memory to 

datapath register 
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Control Unit - sub operation 

 Execute 

 Move data through 

the ALU 

 This particular 

instruction does 

nothing during this 

sub-operation 

Control Unit  sub - operation 

 Store results 

 Write data from 

register to memory 

 This particular 

instruction does 

nothing during this 

sub-operation 
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Instruction Cycles 

Instruction Cycles 
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Instruction Cycles 

Architectural Considerations 

 N-bit processor 

 N-bit ALU, registers, 

buses, memory data 

interface 

 Embedded: 8-bit, 16-bit, 

32-bit common 

 Desktop/servers: 32-bit, 

even 64 

 PC size determines address 

space 



10/28/2013 

20 

Architectural Considerations 

 Clock frequency 

 Inverse of clock 

period 

 Must be longer than 

longest register to 

register delay in 

entire processor 

 Memory access is 

often the longest 

40 

General-purpose processors 
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General-purpose processors 

  addi r1, r0, 0 

  addi r3, r0, 0 

Loop:  lw r4,M(r1) 

  addi r1,r1,4 

  slti r2, r1, 40 

  add r3,r3,r4 

  bnez r2, loop  

total = 0; 

for (i = 0; i< N; i++)  

   total += M[i]; 

 

How to improve performance 

 Improve frequency ( depends on IC technology) 

 They increase the number of instructions/data 

executed in the same clock cycle 

 Temporal parallelism (pipeline) 

 Spatial parallelism  

 Instruction Level Parallelism (Superscalar, VLIW,  ..) 

 Data level Parallelism (SIMD processors) 
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Pipelining 

Performance optimization technique based on the overlap 

of the execution of multiple instructions deriving from a 

sequential execution flow. 

• Pipelining exploits the parallelism among instructions 

in a sequential instruction stream. 

• Basic idea: 

The execution of an instruction is divided into different 

phases (pipelines stages), requiring a fraction of the time 

necessary to complete the instruction. 

• The stages are connected one to the next to form the 

pipeline: instructions enter in the pipeline at one end, 

progress through the stages, and exit from the other 

end, as in an assembly line. 

44 

Pipelining: Increasing Instruction Throughput 
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General-purpose processors 
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The Problem of Hazards 

• A hazard is created whenever there is a dependence 

between instructions, and instructions are close enough that 

the overlap caused by pipelining would change the order of 

access to the operands involved in the dependence. 

• Hazards prevent the next instruction in the pipeline from 

executing during its designated clock cycle. 

• Hazards reduce the performance from the ideal speedup 

gained by pipelining. 
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Three Classes of Hazards 

• Structural Hazards: Attempt to use the same resource 

from different instructions simultaneously 

- Example: Single memory for instructions and data 

• Data Hazards: Attempt to use a result before it is 

ready 

- Example: Instruction depending on a result of a 

previous instruction still in the pipeline 

• Control Hazards: Attempt to make a decision on the 

next instruction to execute before the condition is 

evaluated 

- Example: Conditional branch execution 

Structural hardware 

 Two solutions 

 Hardware duplication 

 Insertion of “bubbles” or stalls in the pipeline 
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Data Hazards 

Data Hazards 

 Compilation techniques 

 Insertion of nop (no operation) instructions 

 Instructions Scheduling to avoid that correlating 

instructions are too close 

 The compiler tries to insert independent instructions among 

correlating instructions 

 When the compiler does not find independent instructions, it 

Insert nops. 

 Hardware techniques 

 Insertion of “bubbles” or stalls in the pipeline 

 Data Forwarding or Bypassing 
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Data Forwarding 

Forwarding implementation 
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Forwarding implementation 

Data hazard with lw 
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Data hazard with lw 

1 stall cycle is required 

Hazard Detection Unit 
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Data Hazards 

Data hazards analyzed up to now are: 

– RAW (READ AFTER WRITE) hazards: 

instruction n+1 tries to read a source register before the 

previous instruction n has written it in the RF. 

 

Example: 

add $r1, $r2, $r3 

sub $r4, $r1, $r5 

 

• By using forwarding, it is always possible to solve this conflict 

without introducing stalls, except for the load/use hazards 

where it is necessary to add one stall 

Data Hazards 

 Other types of data hazards in the pipeline: 

 WAW (WRITE AFTER WRITE) 

 WAR (WRITE AFTER READ) 
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Data Hazard: Write After Write 

 Instruction n+1 tries to write a destination operand before 

it has been written by the previous instruction n 

⇒ write operations executed in the wrong order 

 This type of hazards could not occur in the MIPS pipeline 

because all the register write operations occur in the WB 

stage and instructions are completed in order 

n:  lw $r1, 0($r2) 

n+1: add $r1,$r2,$r3 

Data Hazard: Write After Write 

 Example: If we assume the register write in the ALU instructions 

occurs in the fourth stage and that load instructions require two 

stages (MEM1 and MEM2) to access the data memory, we can 

have: 

IFetch  

T0 

IDec 

T1 

IExe  

T2 

IMem 1 

T3 

IMem 2 

T4 

IWB 

T5 

IFetch  IDec  IExe  IWB  

lw $r1, 0($r2) 

add $r1,$r2,$r3 
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Data Hazard: Write After Read 

 Instruction n+1 tries to write a destination operand before it 

has been read from the previous instruction n 

 ⇒ instruction n reads the wrong value. 

 This type of hazards could not occur in the MIPS pipeline 

because the operand read operations occur in the ID stage 

and the write operations in the WB stage. 

n:   sw $r1, 0($r2) 

n+1: add $r2, $r3, $4 

Data Hazard: Write After Read 

 As before, if we assume the register write in the ALU 

instructions occurs in the fourth stage and that we need two 

stages to access the data memory, some instructions could read 

operands too late in the pipeline. 

 Example: Instruction sw reads $r2 in the second half of MEM2 

stage and instruction add writes $r2 in the first half of WB 

stage ⇒ sw reads the new value of $r2. 

IFetch  

T0 

IDec 

T1 

IExe 

T2 

IMem 1 

T3 

IMem 2 

T4 

IWB 

T5 

IFetch  IDec  IExe  IWB  

sw $r1, 0($r2) 

add $r2, $r3, $4 
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Control Hazards 

 Control hazards: Attempt to make a decision on the 

next instruction to fetch before the branch condition is 

evaluated. 

 Control hazards arise from the pipelining of 

conditional branches and other instructions changing 

the PC. 

 Control hazards reduce the performance from the 

ideal speedup gained by the pipelining since they 

can make it necessary to stall the pipeline. 

Branch hazards 

 To feed the pipeline we need to fetch a new instruction at each 

clock cycle, but the branch decision (to change or not change 

the PC) is taken during the MEM stage. 
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Branch hazards 

 This delay to determine the correct instruction to fetch is 

called Control Hazard or Conditional Branch Hazard 

 If a branch changes the PC to its target address, it is a 

taken branch 

 If a branch falls through, it is not taken or untaken. 

Branch hazards: solutions 

 To stall the pipeline until the branch decision is taken (stalling until 

resolution) and then fetch the correct instruction flow. 

 If the branch is not taken, the three cycles penalty is not justified ⇒ 

throughput reduction. 

IF Branch successor + 5 

ID IF Branch successor + 4 

EX ID IF Branch successor + 3 

MEM EX ID IF Branch successor + 2 

WB MEM EX ID IF Branch successor + 1 

WB MEM EX ID IF stall stall IF Branch successor 

WB MEM EX ID IF Branch instruction 
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Branch hazards: solutions 

 We can assume the branch not taken, and flush the next 3 

instructions in the pipeline only if the branch will be taken. 
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Early Evaluation of the PC 

 To improve performance in case of branch hazards, 

we need to add hardware resources to: 

 Compare registers 

 Compute branch target address 

 Update the PC register as soon as possible in the 

pipeline. 

 MIPS processor compares registers, computes 

branch target address and updates PC during ID 

stage. 
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Early Evaluation of the PC 
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Branch Prediction Techniques 

 Main goal of branch prediction techniques: try to predict ASAP 

the result of a branch instruction. 

 In general, the problem of the branch prediction becomes worse 

for deeply pipelined processors because the cost of incorrect 

predictions increases 

 The performance of a branch prediction technique depends on:  

 Accuracy measured in terms of percentage of incorrect predictions. 

 Cost of a incorrect prediction measured in terms of time lost to 

execute useless instructions (misprediction penalty). 

 We also need to consider branch frequency: the importance of 

accurate branch prediction is higher in programs with higher 

branch frequency. 
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Branch Prediction Techniques 

 There are many methods to deal with the performance loss 

due to branch hazards: 

 Static Branch Prediction Techniques: The actions for a branch are 

fixed for each branch during the entire execution. The actions are 

fixed at compile time. 

 Dynamic Branch Prediction Techniques: The decision causing the 

branch prediction can change during the program execution. 

 In both cases, care must be taken not to change the processor 

state until the branch is definitely known. 

Static Branch Prediction Techniques 

 Branch Always Not Taken (Predicted-Not-Taken) 

 Execute successor instructions in sequence 

 “Squash” instructions in pipeline if branch actually taken 

 Advantage of late pipeline state update 

 47% DLX branches not taken on average   

 Branch Always Taken (Predicted-Taken) 

 53% DLX branches taken on average 

 But haven’t calculated branch target address in MIPS 

 DLX still incurs 1 cycle branch penalty 

 Other machines: branch target known before outcome 

 Backward Taken Forward Not Taken (BTFNT) 
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Static Branch Prediction Techniques 

 Delayed Branch 

 The instruction in the branch delay slot is executed whether or not the 

branch is taken. 

 The compiler statically schedules an independent instruction in the branch 

delay slot. 

 

Branch delay slot 

(a)  From before (b)  From target (c)  From fall through 

SUB R4, R5, R6  
  
  
ADD R1, R2, R3  
  
if R1 = 0 then  
  
  

ADD R1, R2, R3  
  
if R1 = 0 then  
  
   
  
SUB R4, R5, R6 

ADD R1, R2, R3  
  
if R1 = 0 then  
  
      SUB R4, R5, R6 

  
  
  
ADD R1, R2, R3  
  
if R1 = 0 then  
  
      SUB R4, R5, R6 

ADD R1, R2, R3  
  
if R2 = 0 then  
  
     

  
  
if R2 = 0 then  
  
      ADD R1, R2, R3 

Becomes Becomes Becomes 

Delay slot 

Delay slot 

Delay slot 

SUB R4,R5,R6 
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Dynamic Branch Prediction 

 Basic Idea: To use the past branch behavior to 

predict the future. 

 We use hardware to dynamically predict the 

outcome of a branch: the prediction will depend on 

the behavior of the branch at run time and will 

change if the branch changes its behavior during 

execution. 

Dynamic Branch Prediction 

 Dynamic branch prediction is based on two interactive 

mechanism: 

 Branch Outcome Predictor: 

 To predict the direction of a branch (i.e. taken or not taken). 

 Branch Target Predictor: 

 To predict the branch target address in case of taken 

branch. 

 These modules are used by the Instruction Fetch Unit to 

predict the next instruction to read in the I-cache. 

 If branch is not taken ⇒ PC is incremented. 

 If branch is taken ⇒ BTP gives the target address 
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Branch Prediction Buffers 

 The simplest thing to do with a branch is to predict 
whether or not it is taken.  

 

 This helps in pipelines where the branch delay is longer 
than the time it takes to compute the possible target 
PCs .  
 If  we can save the decision time, we can branch sooner.  

 

 Note that this scheme does NOT help with the MIPS we 
studied.  
 Since the branch decision and target PC are computed in ID, assuming 

there is no hazard on the register tested.  

 

Branch-Prediction Buffers 
One-bit Prediction Scheme 

 Is a  buffer (cache) (BHT - Branch History Table) indexed by the 

lower portion of the address of the branch instruction 

• The memory contains a bit that says whether the branch was 

recently taken or not 

• It has no tag 

 It may have been put there by another branch (that has the same low-

order address bits) 

• The prediction is a hint that is presumed to be correct, and fetching 

begins in the predicted direction 

 If the hint turns out to be wrong, the prediction bit is inverted and stored 

back 

 The branch direction could be incorrect because:  
• misprediction  

• Instruction mismatch  

• In either case, the worst that happens is that you have to pay the full 

latency for the branch.  
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 Consider a loop branch whose behavior is taken nine times in a row, 

then not taken once. What is the prediction accuracy for this branch, 

assuming the prediction bit for this branch remains in the prediction 

buffer? 

Branch Prediction

Taken ?

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken

Taken Not taken

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken

Taken Not taken

Taken Taken

Taken Taken

… …

 The prediction accuracy for this branch that is 

taken 90% of the time is only 80% (two 

incorrect predictions and eight correct ones). 

Branch-Prediction Buffers 
One-bit Prediction Scheme 

Branch-Prediction Buffers 
Two-bit Prediction Scheme 

 A prediction must miss twice before is changed 

 The prediction accuracy for this branch that is 

taken 90% of the time is 90% (one incorrect 

predictions and nine correct ones) 

 The two-bit scheme is actualy a specialization of 

a more general scheme that has n-bit saturating 

counter for each entry in the prediction buffer 

 Studies of n-bit predictors have shown that two-bit 

predictors do almost as well, and thus most systems 

rely on two-bit branch predictors 

Branch Prediction

Taken ?

Taken ?

Taken Taken

… Taken

Taken Taken

Not taken Taken (miss)

Taken Taken

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken (miss)

Taken Taken

Taken Taken

Taken Taken

… …

Predict 

taken 

Predict 

taken 

Predict 

not taken 

Predict 

not taken 

Taken 

Not taken 

Not taken 

Taken 

Not taken 

Taken 

Taken Not taken 
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Branch Prediction Buffer 

 A branch prediction buffer can be implemented as 

A small special cache accessed with the instruction address during 

the IF pipe stage 

A pair of bits attached to each block in the instruction cache and 

fetched with the instruction 

 While this scheme is useful for most pipelines, the DLX 

pipeline finds out both whether the branch is taken and 

what the target of the branch is at roughly the same time 

Branch Prediction Buffer 
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Branch-Target Buffers 

 To reduce the branch penalty on DLX, we need to 

know from what address to fetch by the end of IF 

If the instruction is a branch and we know what the next 

PC should be, we can have a branch penalty of zero! 

Branch-Target Buffer (BTB) 

Is a cache that stores the predicted address for the next 

instruction after a branch 

It is accessed during the IF stage using the instruction 

address of the fetched instruction 

It only stores the predicted-taken brances 

Branch Target Buffer 

 Branch Target Buffer (BTB): Address of branch index to get prediction AND branch 

address (if taken) 

 Note: must check for branch match now, since can’t use wrong branch address 

 

 

 

 

 

 

 

 

Branch PC Predicted PC 

=? 

PC
 of instruction 

F
E
T
C
H
 

Predict taken or untaken 
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BTB 

 Allocation 

 Allocate instructions identified as branches (after decode) 

 Both conditional and unconditional branches are allocated 

 Not taken branches need not be allocated 

 BTB miss implicitly predicts not-taken 

 Prediction 

 BTB lookup is done parallel to IC lookup 

 BTB provides 

 Indication that the instruction is a branch (BTB hits) 

 Branch predicted target 

 Branch predicted direction 

 Branch predicted type (e.g., conditional, unconditional) 

 Update (when branch outcome is known) 

 Branch target 

 Branch history (taken / not-taken) 

BTB (cont.) 

 Wrong prediction 

 Predict not-taken, actual taken 

 Predict taken, actual not-taken 

 In case of wrong prediction – flush the pipeline 

 Reset latches (same as making all instructions to be NOPs) 

 Select the PC source to be from the correct path 

 Need get the fall-through with the branch 

 Start fetching instruction from correct path 
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Adding a BTB to the Pipeline 
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Using The BTB 

PC moves to next instruction 

Inst Mem gets PC 

and fetches new inst 

BTB gets PC 

and looks it up 

IF/ID latch loaded 

with new inst 

BTB Hit ? 

Br taken ? 
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Using The BTB (cont.) 

ID 

EXE 

MEM 

WB 

Branch ? 

Calculate br 

cond & trgt 

Flush pipe & 

update PC 

Corect  

pred ? 

yes no 

IF/ID latch loaded 

with correct inst 

continue 

Update BTB 

yes no 

continue 
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Performance Improvement 

• Performance can be improved by: 

– Faster clock (but there’s a limit) 

– Pipelining: slice up instruction into stages, overlap stages 

– Multiple ALUs to support more than one instruction 
stream 
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Superscalar 

 Multiple ALU which can operate in parallel 

 Fetches instructions in batches,  

 Executes as many as possible instructions 
 Instructions without hazards can be executed in 

parallel 

 May require extensive hardware to detect 
independent instructions (dynamic scheduling) 

 Out of order execution 

 Illusion of in order sequential execution ( from 
the point of view of programmer/compiler 

 A superscalar implementation does not change 
instruction Set Architecture 

Superscalar 

I Issue

E
int

E

FP add

E

FPmul1

E

FPmul2

W

1

7

4

24E

FP div

7

M

ScoreboardScoreboard

R

R

R

R

RCompletes when:
•Funcional unit is 

not busy
•Destination 
register not 

pending (prevent 
WAW)

Completes when:
•Source operand is 
ready

Completes when:
•No func.unit is 
waiting for this 

register from a 
different func.unit
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VLIW 

• Each word in memory has multiple independent 

instructions 

• Rely on software for identifying potential parallelism 

and schedule instructions (static scheduling) 

• Processors expect dependency-free code generated 

by the compiler 

• No hardware scheduler, no hardware management of 

hazards  

• VLIW can be smaller, cheaper, and require less 

power to operate 

• Currently growing in popularity 

VLIW 

 

Instruction  

Register 
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Two Memory Architectures 

Processor 

Program 

memory 

Data 

memory 

Processor 

Memory 

(program and data) 

Harvard Princeton 

 Princeton 

 Fewer memory wires 

 Harvard 

 Simultaneous 

program and data 

memory access 
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Cache Memory 

 Memory access may be slow 

 Cache is small but fast 

memory close to processor 

 Holds copy of part of 

memory 

 Hits and misses 

Processor 

Memory 

Cache 

Fast/expensive technology, 

usually on the same chip 

Slower/cheaper technology, 

usually on a different chip 
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Programmer’s View 

 Programmer doesn’t need detailed understanding of 

architecture 

 Instead, needs to know what instructions can be executed 

 Two levels of instructions: 

 Assembly level 

 Structured languages (C, C++, Java, etc.) 

 Most development today done using structured languages 

 But, some assembly level programming may still be necessary 

 Drivers: portion of program that communicates with and/or controls 

(drives) another device 

 Often have detailed timing considerations, extensive bit manipulation 

 Assembly level may be best for these 

98 

Assembly-Level Instructions 

opcode operand1 operand2 

opcode operand1 operand2 

opcode operand1 operand2 

opcode operand1 operand2 

... 

Instruction 1 

Instruction 2 

Instruction 3 

Instruction 4 

 Instruction Set 

 Defines the legal set of instructions for that processor 

 Data transfer: memory/register, register/register, I/O, etc. 

 Arithmetic/logical: move register through ALU and back 

 Branches: determine next PC value when not just PC+1 
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A Simple (Trivial) Instruction Set 

       opcode                         operands 

MOV Rn, direct 

MOV @Rn, Rm 

ADD Rn, Rm 

0000 Rn direct 

0010 Rn 

0100 Rm Rn 

Rn = M(direct) 

Rn = Rn + Rm 

SUB Rn, Rm 0101 Rm Rn = Rn - Rm 

MOV Rn, #immed. 0011 Rn immediate Rn = immediate 

Assembly instruct. First byte Second byte Operation 

JZ  Rn, relative 0110 Rn relative PC = PC+ relative 

   (only if Rn is 0) 

Rn 

MOV direct, Rn 0001 Rn direct M(direct) = Rn 

Rm M(Rn) = Rm 

100 

Addressing Modes 

Data 

Immediate 

Register-direct 

Register 

indirect 

Direct 

Indirect 

Data 

Operand field 

Register address 

Register address 

Memory address 

Memory address 

Memory address Data 

Data 

Memory address 

Data 

Addressing 

mode 

Register-file 

contents 

Memory 

contents 
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Sample Programs 

int total = 0; 

for (int i=10; i!=0; i--) 

   total += i; 

// next instructions... 

C program 

MOV R0, #0;           // total = 0 

MOV R1, #10;         // i = 10 

JZ R1, Next;            // Done if i=0 

ADD R0, R1;           // total += i 

MOV R2, #1;           // constant 1 

JZ R3, Loop;            // Jump always 

Loop: 

Next: // next instructions... 

SUB R1, R2;            // i-- 

Equivalent assembly program 

MOV R3, #0;           // constant 0 

0 

1 

2 

3 

5 

6 

7 

 Try some others 

 Handshake: Wait until the value of M[254] is not 0, set M[255] to 1, wait 
until M[254] is 0, set M[255] to 0 (assume those locations are ports). 

 (Harder) Count the occurrences of zero in an array stored in memory 
locations 100 through 199.  

102 

Programmer Considerations 

 Program and data memory space 

 Embedded processors often very limited 

 e.g., 64 Kbytes program, 256 bytes of RAM (expandable) 

 Registers: How many are there? 

 Only a direct concern for assembly-level programmers 

 I/O 

 How communicate with external signals? 

 Interrupts 
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Microprocessor Architecture 

Overview 

 If you are using a particular microprocessor, now is 

a good time to review its architecture 

104 

Example: parallel port driver 

 Using assembly language programming we can configure a PC 

parallel port to perform digital I/O 

 write and read to three special registers to accomplish this table provides 

list of parallel port connector pins and corresponding register location 

 Example : parallel port monitors the input switch and turns the LED on/off 

accordingly 

 

PC Parallel port

Pin 13

Pin 2

Switch

LED

LPT Connection Pin I/O Direction Register Address 

1 Output 0th bit of register #2

  

 
2-9 Output 0th bit of register #2 

14,16,17 Output 1,2,3th bit of register #2 

10,11,12,13,15 Input 6,7,5,4,3th bit of register 

#1 
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Parallel Port Example 

; This program consists of a sub-routine that reads 

; the state of the input pin, determining the on/off state 

; of our switch and asserts the output pin, turning the LED 

; on/off accordingly 

 .386 

 

CheckPort proc 

 push ax  ; save the content 

 push dx   ; save the content 

 mov dx, 3BCh + 1 ; base + 1 for register #1 

 in al, dx  ; read register #1 

 and  al, 10h ; mask out all but bit # 4 

 cmp al, 0  ; is it 0? 

 jne SwitchOn ; if not, we need to turn the LED on 

 

SwitchOff: 

 mov dx, 3BCh + 0 ; base + 0 for register #0 

 in al, dx  ; read the current state of the port 

 and al, f7h ; clear first bit (masking) 

 out dx, al  ; write it out to the port 

 jmp Done          ; we are done 

 

SwitchOn: 

 mov dx, 3BCh + 0 ; base + 0 for register #0 

 in al, dx  ; read the current state of the port 

 or al, 01h ; set first bit (masking) 

 out dx, al  ; write it out to the port 

  

Done:  pop dx  ; restore the content 

 pop ax  ; restore the content 

CheckPort endp 

extern “C” CheckPort(void); // defined in  

     // assembly  

void main(void) { 

 while( 1 ) { 

  CheckPort(); 

 } 

} 

LPT Connection Pin I/O Direction Register Address 

1 Output 0th bit of register #2

  

 
2-9 Output 0th bit of register #2 

14,16,17 Output 1,2,3th bit of register #2 

10,11,12,13,15 Input 6,7,5,4,3th bit of register 

#1 

PC Parallel port

Pin 13

Pin 2

Switch

LED
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Operating System 

 Optional software layer 
providing low-level services to 
a program (application). 

 File management, disk access 

 Keyboard/display interfacing 

 Scheduling multiple programs 
for execution 

 Or even just multiple threads from 
one program 

 Program makes system calls to 
the OS 

 

DB file_name “out.txt” -- store file name 

 

MOV R0, 1324           -- system call “open” id 

MOV R1, file_name      -- address of file-name 

INT 34                 -- cause a system call 

JZ  R0, L1             -- if zero -> error 

 

   . . . read the file 

JMP L2                 -- bypass error cond. 

L1: 

   . . . handle the error 

 

L2: 
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Development Environment 

 Development processor 

 The processor on which we write and debug our programs 

 Usually a PC 

 Target processor 

 The processor that the program will run on in our embedded system  

 Often different from the development processor 

Development processor Target processor 

108 

Software Development Process 

Compiler 

Linker 

C File C File Asm. 

File 

Binary 

File 

Binary 

File 

Binary 

File 

Exec. 

File 

Assemble

r 

Library 

Implementation Phase 

Debugger 

Profiler 

Verification Phase 

 Compilers 

 Cross compiler 

 Runs on one 

processor, but 

generates code 

for another 

 Assemblers 

 Linkers 

 Debuggers 

 Profilers 
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Running a Program 

 If development processor is different than target, 

how can we run our compiled code? Two options: 

 Download to target processor 

 Simulate 

 Simulation 

 One method: Hardware description language 

 But slow, not always available 

 Another method: Instruction set simulator (ISS) 

 Runs on development processor, but executes instructions of 

target processor 

110 

Instruction Set Simulator For A 

Simple Processor 
#include <stdio.h> 

typedef struct { 

   unsigned char first_byte, second_byte; 

} instruction; 

 

instruction program[1024];  //instruction memory 

unsigned char memory[256];  //data memory 

 

void run_program(int num_bytes) { 

 

   int pc = -1; 

   unsigned char reg[16], fb, sb; 

    

   while( ++pc < (num_bytes / 2) ) { 

      fb = program[pc].first_byte; 

      sb = program[pc].second_byte; 

      switch( fb >> 4 ) { 

         case 0: reg[fb & 0x0f] = memory[sb]; break; 

         case 1: memory[sb] = reg[fb & 0x0f]; break; 

         case 2: memory[reg[fb & 0x0f]] =  

                 reg[sb >> 4];  break; 

         case 3: reg[fb & 0x0f] = sb; break; 

         case 4: reg[fb & 0x0f] += reg[sb >> 4]; break; 

         case 5: reg[fb & 0x0f] -= reg[sb >> 4]; break; 

         case 6: pc += sb; break; 

         default: return –1; 

       

 

} 

   } 

   return 0; 

} 

 

int main(int argc, char *argv[]) { 

 

   FILE* ifs; 

 

   If( argc != 2 ||  

       (ifs = fopen(argv[1], “rb”) == NULL ) { 

            return –1; 

   } 

   if (run_program(fread(program,  

       sizeof(program) == 0) { 

 print_memory_contents(); 

 return(0); 

   } 

   else return(-1); 

} 
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Testing and Debugging 

Implementation 

Phase 

 

Implementation 

Phase 

 

Verification 

Phase 

 

Verification 

 Phase 

Emulator 

Debugger

/ ISS 

Programmer 

Development processor 

(a) (b) 

External tools 

 ISS  

 Gives us control over time – set 
breakpoints, look at register 
values, set values, step-by-step 
execution, ... 

 But, doesn’t interact with real 
environment 

 Download to board 

 Use device programmer 

 Runs in real environment, but 
not controllable 

 Compromise: emulator 

 Runs in real environment, at 
speed or near 

 Supports some controllability 
from the PC 
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Application-specific processors 

• Programmable processor optimized for a 

particular class of applications having common 

characteristics 
 Compromise between general-purpose and single-

purpose processors 

• Features 
 Program memory 

 Optimized datapath 

 Special functional units 

• Benefits 
 Some flexibility, good performance, size and power 

• Drawbacks 

 High NRE cost (processor and compiler) 

• Examples: Microcontroller, DSP 

IR PC 

Registers 

Custom 

ALU 

Datapath Controller 

Program 

memory 

Assembly code 

for: 
 

 total = 0; 

 for(i =0;i<N;i++)  

     total+=M[i]; 

Control  

logic and 

State register 

Data 

memory 
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Application-Specific Instruction-Set 

Processors (ASIPs) 

 General-purpose processors 

 Sometimes too general to be effective in demanding 
application 

 e.g., video processing – requires huge video buffers and 
operations on large arrays of data, inefficient on a GPP 

 But single-purpose processor has high NRE, not 
programmable 

 ASIPs – targeted to a particular domain 

 Contain architectural features specific to that domain 

 e.g., embedded control, digital signal processing, video 
processing, network processing, telecommunications, etc. 

 Still programmable 
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A Common ASIP: Microcontroller 

• For embedded control applications 
– Reading sensors, setting actuators 

– Mostly dealing with events (bits): data 
is present, but not in huge amounts 

– e.g., VCR, disk drive, digital camera 
(assuming SPP for image 
compression), washing machine, 
microwave oven 

•Microcontroller features 
– On-chip peripherals 

• Timers, analog-digital converters, serial communication, etc. 

• Tightly integrated for programmer, typically part of register 
space 

– On-chip program and data memory 

– Direct programmer access to many of the chip’s pins 

– Specialized instructions for bit-manipulation and other low-
level 
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Digital Signal Processors (DSP) 

• For signal processing applications 

– Large amounts of digitized data, often streaming 

– Data transformations must be applied fast 

– e.g., cell-phone voice filter, digital TV, music synthesizer 

• DSP features 

– Several instruction execution units 

– Multiple-accumulate single-cycle instruction, other instrs. 

– Efficient vector operations – e.g., add two arrays 

• Vector ALUs, loop buffers, etc. 

116 

Trend: Even More Customized ASIPs 

 In the past, microprocessors were acquired as chips 

 Today, we increasingly acquire a processor as Intellectual 
Property (IP) 

 e.g., synthesizable VHDL model 

 Opportunity to add a custom datapath hardware and a few 
custom instructions, or delete a few instructions 

 Can have significant performance, power and size impacts 

 Problem: need compiler/debugger for customized ASIP 

 Remember, most development uses structured languages 

 One solution: automatic compiler/debugger generation 

 e.g., www.tensillica.com 

 Another solution: retargettable compilers 

 e.g., www.improvsys.com (customized VLIW architectures) 

http://www.tensillica.com/
http://www.improvsys.com/
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Microcontroller: ST6 

•  8-bit Microcontroller 

– Memories 
Up to 4 Kbytes of program memory 
OTP/ROM 
Up to 64 bytes of RAM 
 

– I/O Ports 
Up to 20 I/O lines 
Multifunctional, bi-directional I/O pins 
Up to 4 high current capability I/O line 

– Clock, Reset and Power Supply 
Power supply operating range: 3.0V to 
6V 
Maximum external frequency: 8 MHz 
Oscillator Safeguard (OSG) and 
Backup oscillator (LFAO) 
Low Voltage Detector (LVD) 
2 power saving modes: WAIT and 
STOP 

– Interrupts 
4 interrupt vectors plus NMI and RESET 
Software programmable for each I/O 

 I/O Ports 
Up to 20 I/O lines 
Multifunctional, bi-directional I/O pins 
Up to 4 high current capability I/O line 

 Peripherals 
Watchdog timer 
8-bit timer  
ADC 

 Instruction Set 
8-bit accumulator-based architecture 
40 instructions 
9 addressing modes 
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Microcontroller:  STR7(ARM7TDMI® core) 

• STR710F Flash Microcontrollers from STMicroelectronics 
combine the industry standard ARM7TDMI® RISC 
microprocessor with embedded Flash and powerful 
peripheral functions including, USB and CAN.  
 


