
10/28/2013

1

1

Processor
technology

Riferimenti bibliografici

“Embedded System Design: A Unified Hardware/Software Introduction” , Frank Vahid,

Tony Givargis, John Wiley & Sons Inc., ISBN:0-471-38678-2, 2002.

“Computer architecture, a quantitative approach”, Hennessy & Patterson: (Morgan

Kaufmann eds.)

2

Processor technology

Application-specific

Registers

Custom

ALU

Datapath Controller

Program memory

Assembly code

for:

 total = 0

 for i =1 to …

Control logic

and State

register

Data

memory

IR PC

Single-purpose (“hardware”)

Datapath Controller

Control

 logic

State

register

Data

memory

index

total

+

IR PC

Register

file

General

ALU

Datapath Controller

Program

memory

Assembly code

for:

 total = 0

 for i =1 to …

Control

logic and

State register

Data

memory

General-purpose (“software”)

 The architecture of the computation engine used to implement a
system’s desired functionality

 Processor does not have to be programmable

 “Processor” not equal to general-purpose processor

10/28/2013

2

3

Processor technology

total = 0;

for (i = 0; i< N; i++)

 total += M[i];

General-purpose

processor

Single-purpose

processor

Application-specific

processor

Desired

functionality

 Processors vary in their customization for the problem at hand

4

Single-purpose processors

• Digital circuit designed to execute exactly

one program
 a.k.a. coprocessor, accelerator or peripheral

• Features
 Contains only the components needed to

execute a single program

 No program memory

• Benefits
 Fast

 Low power
Small size

• Drawbacks

 No flexibility, high time-to-market, high NRE cost

Datapath Controller

Control

logic

State

register

Data

memory

index

total

+

10/28/2013

3

Basic logic gates

Combinational components

10/28/2013

4

Sequential components

Sequential Logic Design

10/28/2013

5

Sequential Logic Design

Single-purpose processor design

Can be viewed as the design of a

system with 2 components:

• Datapath, which executes

operations required to the

system

• Control Unit, which generates

commands for datapath on

the basis of data inputs and

conditions

controller and datapath

controller datapath

…

…

external

control

outputs

external

control

inputs
…

external

data

 inputs

…

external

data

outputs

datapath

control

inputs

datapath

control

outputs

10/28/2013

6

Sigle-purpose processor design

controller and datapath

controller datapath

…

…

external

control

outputs

external

control

inputs
…

external

data

 inputs

…

external

data

outputs

datapath

control

inputs

datapath

control

outputs

… …

a view inside the controller and datapath

controller datapath

… …

state

register

next-state

and

control

logic

registers

functional

units

Single-purpose processor design

flow

1. Processor Specifications (algorithmic

description)

2. Convert algorithm to “complex” state machine
 Known as FSMD: finite-state machine with datapath

 Can use templates to perform such conversion

3. Datapath design

4. Control unit design

10/28/2013

7

Datapath design

Datapath design uses a library of components

Multiplexer

Decoder

Comparators

ALUs

Registers

Datapath Design

 The design the datapath requires, starting from the
specifications of the system, the realization of a schematic
that defines

 the necessary components;

 as components are connected;

 the conditions and the results produced;

 the control signals which must be produced by the control unit;

 In designing the datapath is necessary to take account of
some project constraints such as:

 maximum latency

 maximum area

 maximum power

10/28/2013

8

Datapath design

 Create a register for any declared variable

 Create a functional unit for each arithmetic operation

 Connect the ports, registers and functional units

 Based on reads and writes

 Use multiplexors for multiple sources

 Create unique identifier

 for each datapath component control input and output

Control Unit Design

 Designing the control unit is equivalent to designing a

finite state machine (FSM)

 Identified states and control signals for the datapath,

the design of the control unit can be realized using

the methods of synthesis of synchronous sequential

circuits

10/28/2013

9

Example

Specification:

while(1)

{while(start!=1);

 {total = 0;

 for (index = 0; index< N; index++)

 total += M[index];

 }

}

Total=0

Index=0

Index<N
Total=total+M[index)

index=index+1

Index==N

Start==1

Start!=1

Example

Initialize

total=0

index=0

ADD

total += M[index];

Index++

IDLE

start==1

Index< N

FSM:

start!=1

10/28/2013

10

19

Single-purpose processors

+

Index

4

+

Total

Memory

rst

En

N
Compare

Cond

Control

Unit

Datapath
start

Control Unit Design

State rst en

IDLE 0 0

INIT 1 0

ADD 0 1

10/28/2013

11

Example: Least common multiple

Specification

while(true)

 { Ready='1';

 do

 while(start!='1');

 ma=A; mb=B; Ready='0';

 while(ma!=mb)

 if(ma<mb)

 ma=ma+A;

 else

 mb=mb+B;

 Ris=ma;

 }

Example: Least common multiple

To design the datapath the following blocks are required:

 Registers (ma, mb and Ris)

 Comparatores for conditions (A!=B) and (A<B)

 Adders for ma=ma+A and for mb=mb+B

 Multiplexer for selecting inputs of registers ma (A or ma+A)

using SelA or mb (B or mb+B) using SelB

AND port for clock and a write enable for registers ma

(WriteA), mb (writeB) and Ris (WriteR)

10/28/2013

12

Datapath Least common multiple

Mux
A

Reg
ma

+

!=

<

Mux
B

Reg
mb

+

selA

selB

A

B

writeA clk

writeB clk

Not_equal

less

FSM(Moore): Least common multiple

Idle
s0

Init
s1

Start='1'

Compare
s2

 ma=ma+A
s3

mb=mb+B
s4

Ris=ma
s5

not_equal=='0'

not_equal =='1'
less=='1'

not_equal =='1'
less==‘0'

10/28/2013

13

FSM: outputs

S0 S1 S2 S3 S4 S5

SelA - 0 1 1 1 1

SelB - 0 1 1 1 1

WriteA 0 1 0 1 0 0

WriteB 0 1 0 0 1 0

WriteR 0 0 0 0 0 1

Ready 1 0 0 0 0 0

26

General-purpose processors

• Programmable device used in a variety
of applications
 Also known as “microprocessor”

• Features
 Program memory
 General datapath with large register file and

general ALU

• User benefits
 Low time-to-market and NRE costs
 High flexibility

• Drawbacks

 High unit cost

 Low Performance

IR PC

Register

file

General

ALU

Datapath Controller

Program

memory

Assembly code

for:

 total = 0

 for i =1 to …

Control

logic and

State register

Data

memory

10/28/2013

14

Basic architecture

 Control unit and

datapath

 Note similarity to single-

purpose processor

 Key differences

 Datapath is general

 Control unit doesn’t store

the algorithm – the

algorithm is

“programmed” into the

memory

Datapath

 Load

 Read memory location
into register

• ALU operation
– Input certain registers

through ALU, store
back in register

• Store
– Write register to

memory location

10/28/2013

15

Control Unit

 Control unit: configures the datapath
operations

 Sequence of desired operations
(“instructions”) stored in memory –
“program”

 Instruction cycle – broken into several
sub-operations, each one clock cycle,
e.g.:

 Fetch: Get next instruction into IR

 Decode: Determine what the instruction
means

 Fetch operands: Move data from
memory to datapath register

 Execute: Move data through the ALU

 Store results: Write data from register
to memory

Control Unit sub - operation

 Fetch

 Get next instruction

into IR

 PC: program

counter, always

points to next

instruction

 IR: holds the

fetched instruction

10/28/2013

16

Control Unit sub - operation

 Decode

 Determine what the

instruction means

Control Unit sub - operation

 Fetch operands

 Move data from

memory to

datapath register

10/28/2013

17

Control Unit - sub operation

 Execute

 Move data through

the ALU

 This particular

instruction does

nothing during this

sub-operation

Control Unit sub - operation

 Store results

 Write data from

register to memory

 This particular

instruction does

nothing during this

sub-operation

10/28/2013

18

Instruction Cycles

Instruction Cycles

10/28/2013

19

Instruction Cycles

Architectural Considerations

 N-bit processor

 N-bit ALU, registers,

buses, memory data

interface

 Embedded: 8-bit, 16-bit,

32-bit common

 Desktop/servers: 32-bit,

even 64

 PC size determines address

space

10/28/2013

20

Architectural Considerations

 Clock frequency

 Inverse of clock

period

 Must be longer than

longest register to

register delay in

entire processor

 Memory access is

often the longest

40

General-purpose processors

Sequential DLX

P

C

M
U
X

IRead

Address

Data to

Write

Data to

Read

MEM

R
E
G

I
N
S
T
R

Reg. Rs

Reg. Rd

Data to

Write

Rs.

Data

M
U
X

M
U
X

Reg Rt

Rt.

Dati

M
U
X

M
U
X

A

L

U

Est.
Shift

S.2 bit

Zero

Ris.

R
E
G

F
I
L
E

Shift
S.2 bit

TA

R

G

ET

M

U

X

Control

Unit
RegDest

RegWrite
ALUSelB
ALUSelA
ALUop

TargetWrite
PCSource

Mem2Reg
IRWrite

MemWrite
MemRead

IorD
PCWrite
PCWriteCond

A

B

AluOutput Mem

Data

4

10/28/2013

21

41

General-purpose processors

 addi r1, r0, 0

 addi r3, r0, 0

Loop: lw r4,M(r1)

 addi r1,r1,4

 slti r2, r1, 40

 add r3,r3,r4

 bnez r2, loop

total = 0;

for (i = 0; i< N; i++)

 total += M[i];

How to improve performance

 Improve frequency (depends on IC technology)

 They increase the number of instructions/data

executed in the same clock cycle

 Temporal parallelism (pipeline)

 Spatial parallelism

 Instruction Level Parallelism (Superscalar, VLIW, ..)

 Data level Parallelism (SIMD processors)

10/28/2013

22

Pipelining

Performance optimization technique based on the overlap

of the execution of multiple instructions deriving from a

sequential execution flow.

• Pipelining exploits the parallelism among instructions

in a sequential instruction stream.

• Basic idea:

The execution of an instruction is divided into different

phases (pipelines stages), requiring a fraction of the time

necessary to complete the instruction.

• The stages are connected one to the next to form the

pipeline: instructions enter in the pipeline at one end,

progress through the stages, and exit from the other

end, as in an assembly line.

44

Pipelining: Increasing Instruction Throughput

IFetch 0

T0

IDec 0

T1

IExe 0

T2

IMem 0

T3

IWrB 0

T4

IFetch 1

T5

IDec 1

T6

IExe 1

T7

IMem 1

T8

IWrB 1

T9

IFetch 2

T10

IDec 3

T11

IFetch 0

T0

IDec 0

T1

IFetch 1

IExe 0

T2

IDec 1

IFetch 2

IMem 0

T3

IExe 1

IDec 2

IFetch 3

IWrB 0

T4

IMem 1

IExe 2

IDec 3

IFetch 4

IWrB 1

IMem 2

IExe 3

IDec 4

T5

IFetch 5

IWrB 2

IMem 3

IExe 4

T6

IDec 5

IFetch 6

IWrB 3

IMem 4

T7

IExe 5

IDec 6

IFetch 7

IWrB 4

T8

IMem 5

IExe 6

IDec 7

T9

IWrB 5

IMem 6

IExe 7

T10

IWrB 6

IMem 7

T11

IWrB 7

10/28/2013

23

45

General-purpose processors

pipeline DLX

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20–16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15–0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction
[15–11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address

Data
memory

Address

The Problem of Hazards

• A hazard is created whenever there is a dependence

between instructions, and instructions are close enough that

the overlap caused by pipelining would change the order of

access to the operands involved in the dependence.

• Hazards prevent the next instruction in the pipeline from

executing during its designated clock cycle.

• Hazards reduce the performance from the ideal speedup

gained by pipelining.

10/28/2013

24

Three Classes of Hazards

• Structural Hazards: Attempt to use the same resource

from different instructions simultaneously

- Example: Single memory for instructions and data

• Data Hazards: Attempt to use a result before it is

ready

- Example: Instruction depending on a result of a

previous instruction still in the pipeline

• Control Hazards: Attempt to make a decision on the

next instruction to execute before the condition is

evaluated

- Example: Conditional branch execution

Structural hardware

 Two solutions

 Hardware duplication

 Insertion of “bubbles” or stalls in the pipeline

10/28/2013

25

Data Hazards

Data Hazards

 Compilation techniques

 Insertion of nop (no operation) instructions

 Instructions Scheduling to avoid that correlating

instructions are too close

 The compiler tries to insert independent instructions among

correlating instructions

 When the compiler does not find independent instructions, it

Insert nops.

 Hardware techniques

 Insertion of “bubbles” or stalls in the pipeline

 Data Forwarding or Bypassing

10/28/2013

26

Data Forwarding

Forwarding implementation

10/28/2013

27

Forwarding implementation

Data hazard with lw

10/28/2013

28

Data hazard with lw

1 stall cycle is required

Hazard Detection Unit

10/28/2013

29

Data Hazards

Data hazards analyzed up to now are:

– RAW (READ AFTER WRITE) hazards:

instruction n+1 tries to read a source register before the

previous instruction n has written it in the RF.

Example:

add $r1, $r2, $r3

sub $r4, $r1, $r5

• By using forwarding, it is always possible to solve this conflict

without introducing stalls, except for the load/use hazards

where it is necessary to add one stall

Data Hazards

 Other types of data hazards in the pipeline:

 WAW (WRITE AFTER WRITE)

 WAR (WRITE AFTER READ)

10/28/2013

30

Data Hazard: Write After Write

 Instruction n+1 tries to write a destination operand before

it has been written by the previous instruction n

⇒ write operations executed in the wrong order

 This type of hazards could not occur in the MIPS pipeline

because all the register write operations occur in the WB

stage and instructions are completed in order

n: lw $r1, 0($r2)

n+1: add $r1,$r2,$r3

Data Hazard: Write After Write

 Example: If we assume the register write in the ALU instructions

occurs in the fourth stage and that load instructions require two

stages (MEM1 and MEM2) to access the data memory, we can

have:

IFetch

T0

IDec

T1

IExe

T2

IMem 1

T3

IMem 2

T4

IWB

T5

IFetch IDec IExe IWB

lw $r1, 0($r2)

add $r1,$r2,$r3

10/28/2013

31

Data Hazard: Write After Read

 Instruction n+1 tries to write a destination operand before it

has been read from the previous instruction n

 ⇒ instruction n reads the wrong value.

 This type of hazards could not occur in the MIPS pipeline

because the operand read operations occur in the ID stage

and the write operations in the WB stage.

n: sw $r1, 0($r2)

n+1: add $r2, $r3, $4

Data Hazard: Write After Read

 As before, if we assume the register write in the ALU

instructions occurs in the fourth stage and that we need two

stages to access the data memory, some instructions could read

operands too late in the pipeline.

 Example: Instruction sw reads $r2 in the second half of MEM2

stage and instruction add writes $r2 in the first half of WB

stage ⇒ sw reads the new value of $r2.

IFetch

T0

IDec

T1

IExe

T2

IMem 1

T3

IMem 2

T4

IWB

T5

IFetch IDec IExe IWB

sw $r1, 0($r2)

add $r2, $r3, $4

10/28/2013

32

Control Hazards

 Control hazards: Attempt to make a decision on the

next instruction to fetch before the branch condition is

evaluated.

 Control hazards arise from the pipelining of

conditional branches and other instructions changing

the PC.

 Control hazards reduce the performance from the

ideal speedup gained by the pipelining since they

can make it necessary to stall the pipeline.

Branch hazards

 To feed the pipeline we need to fetch a new instruction at each

clock cycle, but the branch decision (to change or not change

the PC) is taken during the MEM stage.

PC

Instruction
memory

In
str

uc
tio

n

Add

Instruction
[20–16]

M
em

to
Re

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15–0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

Re
gW

rit
e

MemRead

Control

ALU

Instruction
[15–11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address

Data
memory

Address

10/28/2013

33

Branch hazards

 This delay to determine the correct instruction to fetch is

called Control Hazard or Conditional Branch Hazard

 If a branch changes the PC to its target address, it is a

taken branch

 If a branch falls through, it is not taken or untaken.

Branch hazards: solutions

 To stall the pipeline until the branch decision is taken (stalling until

resolution) and then fetch the correct instruction flow.

 If the branch is not taken, the three cycles penalty is not justified ⇒

throughput reduction.

IF Branch successor + 5

ID IF Branch successor + 4

EX ID IF Branch successor + 3

MEM EX ID IF Branch successor + 2

WB MEM EX ID IF Branch successor + 1

WB MEM EX ID IF stall stall IF Branch successor

WB MEM EX ID IF Branch instruction

10/28/2013

34

Branch hazards: solutions

 We can assume the branch not taken, and flush the next 3

instructions in the pipeline only if the branch will be taken.

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20–16]

M
em

to
Re

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15–0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

Re
gW

rit
e

MemRead

Control

ALU

Instruction
[15–11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address

Data
memory

Address

flush
flush

flush

Early Evaluation of the PC

 To improve performance in case of branch hazards,

we need to add hardware resources to:

 Compare registers

 Compute branch target address

 Update the PC register as soon as possible in the

pipeline.

 MIPS processor compares registers, computes

branch target address and updates PC during ID

stage.

10/28/2013

35

Early Evaluation of the PC

Data

A L U

S i g n
e x t e n d

memory

PC

Instruction
memory

A D D

A D D

IF/ID

4

ID/EX

EX/MEM MEM/WB

I R 6 . . 1 0

MEM/WB.IR

I R 1 1 . . 1 5

R e g i s t e r s

Zero?

M
u
x

M
u
x

M
u
x

IR

Branch Prediction Techniques

 Main goal of branch prediction techniques: try to predict ASAP

the result of a branch instruction.

 In general, the problem of the branch prediction becomes worse

for deeply pipelined processors because the cost of incorrect

predictions increases

 The performance of a branch prediction technique depends on:

 Accuracy measured in terms of percentage of incorrect predictions.

 Cost of a incorrect prediction measured in terms of time lost to

execute useless instructions (misprediction penalty).

 We also need to consider branch frequency: the importance of

accurate branch prediction is higher in programs with higher

branch frequency.

10/28/2013

36

Branch Prediction Techniques

 There are many methods to deal with the performance loss

due to branch hazards:

 Static Branch Prediction Techniques: The actions for a branch are

fixed for each branch during the entire execution. The actions are

fixed at compile time.

 Dynamic Branch Prediction Techniques: The decision causing the

branch prediction can change during the program execution.

 In both cases, care must be taken not to change the processor

state until the branch is definitely known.

Static Branch Prediction Techniques

 Branch Always Not Taken (Predicted-Not-Taken)

 Execute successor instructions in sequence

 “Squash” instructions in pipeline if branch actually taken

 Advantage of late pipeline state update

 47% DLX branches not taken on average

 Branch Always Taken (Predicted-Taken)

 53% DLX branches taken on average

 But haven’t calculated branch target address in MIPS

 DLX still incurs 1 cycle branch penalty

 Other machines: branch target known before outcome

 Backward Taken Forward Not Taken (BTFNT)

10/28/2013

37

Static Branch Prediction Techniques

 Delayed Branch

 The instruction in the branch delay slot is executed whether or not the

branch is taken.

 The compiler statically schedules an independent instruction in the branch

delay slot.

Branch delay slot

(a) From before (b) From target (c) From fall through

SUB R4, R5, R6

ADD R1, R2, R3

if R1 = 0 then

ADD R1, R2, R3

if R1 = 0 then

SUB R4, R5, R6

ADD R1, R2, R3

if R1 = 0 then

 SUB R4, R5, R6

ADD R1, R2, R3

if R1 = 0 then

 SUB R4, R5, R6

ADD R1, R2, R3

if R2 = 0 then

if R2 = 0 then

 ADD R1, R2, R3

Becomes Becomes Becomes

Delay slot

Delay slot

Delay slot

SUB R4,R5,R6

10/28/2013

38

Dynamic Branch Prediction

 Basic Idea: To use the past branch behavior to

predict the future.

 We use hardware to dynamically predict the

outcome of a branch: the prediction will depend on

the behavior of the branch at run time and will

change if the branch changes its behavior during

execution.

Dynamic Branch Prediction

 Dynamic branch prediction is based on two interactive

mechanism:

 Branch Outcome Predictor:

 To predict the direction of a branch (i.e. taken or not taken).

 Branch Target Predictor:

 To predict the branch target address in case of taken

branch.

 These modules are used by the Instruction Fetch Unit to

predict the next instruction to read in the I-cache.

 If branch is not taken ⇒ PC is incremented.

 If branch is taken ⇒ BTP gives the target address

10/28/2013

39

Branch Prediction Buffers

 The simplest thing to do with a branch is to predict
whether or not it is taken.

 This helps in pipelines where the branch delay is longer
than the time it takes to compute the possible target
PCs .
 If we can save the decision time, we can branch sooner.

 Note that this scheme does NOT help with the MIPS we
studied.
 Since the branch decision and target PC are computed in ID, assuming

there is no hazard on the register tested.

Branch-Prediction Buffers
One-bit Prediction Scheme

 Is a buffer (cache) (BHT - Branch History Table) indexed by the

lower portion of the address of the branch instruction

• The memory contains a bit that says whether the branch was

recently taken or not

• It has no tag

 It may have been put there by another branch (that has the same low-

order address bits)

• The prediction is a hint that is presumed to be correct, and fetching

begins in the predicted direction

 If the hint turns out to be wrong, the prediction bit is inverted and stored

back

 The branch direction could be incorrect because:
• misprediction

• Instruction mismatch

• In either case, the worst that happens is that you have to pay the full

latency for the branch.

10/28/2013

40

 Consider a loop branch whose behavior is taken nine times in a row,

then not taken once. What is the prediction accuracy for this branch,

assuming the prediction bit for this branch remains in the prediction

buffer?

Branch Prediction

Taken ?

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken

Taken Not taken

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken

Taken Not taken

Taken Taken

Taken Taken

… …

 The prediction accuracy for this branch that is

taken 90% of the time is only 80% (two

incorrect predictions and eight correct ones).

Branch-Prediction Buffers
One-bit Prediction Scheme

Branch-Prediction Buffers
Two-bit Prediction Scheme

 A prediction must miss twice before is changed

 The prediction accuracy for this branch that is

taken 90% of the time is 90% (one incorrect

predictions and nine correct ones)

 The two-bit scheme is actualy a specialization of

a more general scheme that has n-bit saturating

counter for each entry in the prediction buffer

 Studies of n-bit predictors have shown that two-bit

predictors do almost as well, and thus most systems

rely on two-bit branch predictors

Branch Prediction

Taken ?

Taken ?

Taken Taken

… Taken

Taken Taken

Not taken Taken (miss)

Taken Taken

Taken Taken

Taken Taken

… Taken

Taken Taken

Not taken Taken (miss)

Taken Taken

Taken Taken

Taken Taken

… …

Predict

taken

Predict

taken

Predict

not taken

Predict

not taken

Taken

Not taken

Not taken

Taken

Not taken

Taken

Taken Not taken

10/28/2013

41

Branch Prediction Buffer

 A branch prediction buffer can be implemented as

A small special cache accessed with the instruction address during

the IF pipe stage

A pair of bits attached to each block in the instruction cache and

fetched with the instruction

 While this scheme is useful for most pipelines, the DLX

pipeline finds out both whether the branch is taken and

what the target of the branch is at roughly the same time

Branch Prediction Buffer

1%

0%

1%

5%

9%

9%

12%

5%

18%

10%

0%

0%

0%

5%

9%

9%

11%

5%

18%

10%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

S
P

E
C

8
9
 b

e
n

c
h

m
a

rk
s

Frequency of mispredictions

4096 entries: 2 bit per entry Unlimited entries: 2 bits per entry

10/28/2013

42

Branch-Target Buffers

 To reduce the branch penalty on DLX, we need to

know from what address to fetch by the end of IF

If the instruction is a branch and we know what the next

PC should be, we can have a branch penalty of zero!

Branch-Target Buffer (BTB)

Is a cache that stores the predicted address for the next

instruction after a branch

It is accessed during the IF stage using the instruction

address of the fetched instruction

It only stores the predicted-taken brances

Branch Target Buffer

 Branch Target Buffer (BTB): Address of branch index to get prediction AND branch

address (if taken)

 Note: must check for branch match now, since can’t use wrong branch address

Branch PC Predicted PC

=?

PC
 of instruction

F
E
T
C
H

Predict taken or untaken

10/28/2013

43

BTB

 Allocation

 Allocate instructions identified as branches (after decode)

 Both conditional and unconditional branches are allocated

 Not taken branches need not be allocated

 BTB miss implicitly predicts not-taken

 Prediction

 BTB lookup is done parallel to IC lookup

 BTB provides

 Indication that the instruction is a branch (BTB hits)

 Branch predicted target

 Branch predicted direction

 Branch predicted type (e.g., conditional, unconditional)

 Update (when branch outcome is known)

 Branch target

 Branch history (taken / not-taken)

BTB (cont.)

 Wrong prediction

 Predict not-taken, actual taken

 Predict taken, actual not-taken

 In case of wrong prediction – flush the pipeline

 Reset latches (same as making all instructions to be NOPs)

 Select the PC source to be from the correct path

 Need get the fall-through with the branch

 Start fetching instruction from correct path

10/28/2013

44

Adding a BTB to the Pipeline

ALUSrc

6

ALU
result

Zero

+
Shift

left 2

ALU

Control

ALUOp

RegDst

RegWrite

Read

reg 1

Read

reg 2

Write

reg

Write

data

Read

data 1

Read

data 2

R
e
g

is
te

r
F

il
e

[15-0]

[20-16]

[15-11]

Sign

extend
16 32

ID/EX

EX/MEM
MEM

/WB

In
s
tr

u
c
ti

o
n

MemRead

MemWrite

Address

Write

Data

Read

Data

Data

Memory

Branch

PCSrc

MemtoReg

4
+

IF/ID

PC

0

1

m

u

x

0

1

m

u

x

0

m

u

x

1

0

m

u

x

Inst.

Memory

Address

Instruction

BTB

1

2

pred target

pred dir

PC+4 (Not-taken target)

taken target

3

Mispredict

Detection

Unit

Flush

predicted target

PC+4 (Not-taken target)

predicted direction

−
4

address

target

direction

a
llo

c
/u

p
d

t

Using The BTB

PC moves to next instruction

Inst Mem gets PC

and fetches new inst

BTB gets PC

and looks it up

IF/ID latch loaded

with new inst

BTB Hit ?

Br taken ?

PC PC + 4 PC perd addr

IF

ID
IF/ID latch loaded

with pred inst

IF/ID latch loaded

with seq. inst Branch ?

yes no

no yes

no yes EXE

10/28/2013

45

Using The BTB (cont.)

ID

EXE

MEM

WB

Branch ?

Calculate br

cond & trgt

Flush pipe &

update PC

Corect

pred ?

yes no

IF/ID latch loaded

with correct inst

continue

Update BTB

yes no

continue

90

Performance Improvement

• Performance can be improved by:

– Faster clock (but there’s a limit)

– Pipelining: slice up instruction into stages, overlap stages

– Multiple ALUs to support more than one instruction
stream

10/28/2013

46

Superscalar

 Multiple ALU which can operate in parallel

 Fetches instructions in batches,

 Executes as many as possible instructions
 Instructions without hazards can be executed in

parallel

 May require extensive hardware to detect
independent instructions (dynamic scheduling)

 Out of order execution

 Illusion of in order sequential execution (from
the point of view of programmer/compiler

 A superscalar implementation does not change
instruction Set Architecture

Superscalar

I Issue

E
int

E

FP add

E

FPmul1

E

FPmul2

W

1

7

4

24E

FP div

7

M

ScoreboardScoreboard

R

R

R

R

RCompletes when:
•Funcional unit is

not busy
•Destination
register not

pending (prevent
WAW)

Completes when:
•Source operand is
ready

Completes when:
•No func.unit is
waiting for this

register from a
different func.unit

10/28/2013

47

VLIW

• Each word in memory has multiple independent

instructions

• Rely on software for identifying potential parallelism

and schedule instructions (static scheduling)

• Processors expect dependency-free code generated

by the compiler

• No hardware scheduler, no hardware management of

hazards

• VLIW can be smaller, cheaper, and require less

power to operate

• Currently growing in popularity

VLIW

Instruction

Register

10/28/2013

48

95

Two Memory Architectures

Processor

Program

memory

Data

memory

Processor

Memory

(program and data)

Harvard Princeton

 Princeton

 Fewer memory wires

 Harvard

 Simultaneous

program and data

memory access

96

Cache Memory

 Memory access may be slow

 Cache is small but fast

memory close to processor

 Holds copy of part of

memory

 Hits and misses

Processor

Memory

Cache

Fast/expensive technology,

usually on the same chip

Slower/cheaper technology,

usually on a different chip

10/28/2013

49

97

Programmer’s View

 Programmer doesn’t need detailed understanding of

architecture

 Instead, needs to know what instructions can be executed

 Two levels of instructions:

 Assembly level

 Structured languages (C, C++, Java, etc.)

 Most development today done using structured languages

 But, some assembly level programming may still be necessary

 Drivers: portion of program that communicates with and/or controls

(drives) another device

 Often have detailed timing considerations, extensive bit manipulation

 Assembly level may be best for these

98

Assembly-Level Instructions

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

...

Instruction 1

Instruction 2

Instruction 3

Instruction 4

 Instruction Set

 Defines the legal set of instructions for that processor

 Data transfer: memory/register, register/register, I/O, etc.

 Arithmetic/logical: move register through ALU and back

 Branches: determine next PC value when not just PC+1

10/28/2013

50

99

A Simple (Trivial) Instruction Set

 opcode operands

MOV Rn, direct

MOV @Rn, Rm

ADD Rn, Rm

0000 Rn direct

0010 Rn

0100 Rm Rn

Rn = M(direct)

Rn = Rn + Rm

SUB Rn, Rm 0101 Rm Rn = Rn - Rm

MOV Rn, #immed. 0011 Rn immediate Rn = immediate

Assembly instruct. First byte Second byte Operation

JZ Rn, relative 0110 Rn relative PC = PC+ relative

 (only if Rn is 0)

Rn

MOV direct, Rn 0001 Rn direct M(direct) = Rn

Rm M(Rn) = Rm

100

Addressing Modes

Data

Immediate

Register-direct

Register

indirect

Direct

Indirect

Data

Operand field

Register address

Register address

Memory address

Memory address

Memory address Data

Data

Memory address

Data

Addressing

mode

Register-file

contents

Memory

contents

10/28/2013

51

101

Sample Programs

int total = 0;

for (int i=10; i!=0; i--)

 total += i;

// next instructions...

C program

MOV R0, #0; // total = 0

MOV R1, #10; // i = 10

JZ R1, Next; // Done if i=0

ADD R0, R1; // total += i

MOV R2, #1; // constant 1

JZ R3, Loop; // Jump always

Loop:

Next: // next instructions...

SUB R1, R2; // i--

Equivalent assembly program

MOV R3, #0; // constant 0

0

1

2

3

5

6

7

 Try some others

 Handshake: Wait until the value of M[254] is not 0, set M[255] to 1, wait
until M[254] is 0, set M[255] to 0 (assume those locations are ports).

 (Harder) Count the occurrences of zero in an array stored in memory
locations 100 through 199.

102

Programmer Considerations

 Program and data memory space

 Embedded processors often very limited

 e.g., 64 Kbytes program, 256 bytes of RAM (expandable)

 Registers: How many are there?

 Only a direct concern for assembly-level programmers

 I/O

 How communicate with external signals?

 Interrupts

10/28/2013

52

103

Microprocessor Architecture

Overview

 If you are using a particular microprocessor, now is

a good time to review its architecture

104

Example: parallel port driver

 Using assembly language programming we can configure a PC

parallel port to perform digital I/O

 write and read to three special registers to accomplish this table provides

list of parallel port connector pins and corresponding register location

 Example : parallel port monitors the input switch and turns the LED on/off

accordingly

PC Parallel port

Pin 13

Pin 2

Switch

LED

LPT Connection Pin I/O Direction Register Address

1 Output 0th bit of register #2

2-9 Output 0th bit of register #2

14,16,17 Output 1,2,3th bit of register #2

10,11,12,13,15 Input 6,7,5,4,3th bit of register

#1

10/28/2013

53

105

Parallel Port Example

; This program consists of a sub-routine that reads

; the state of the input pin, determining the on/off state

; of our switch and asserts the output pin, turning the LED

; on/off accordingly

 .386

CheckPort proc

 push ax ; save the content

 push dx ; save the content

 mov dx, 3BCh + 1 ; base + 1 for register #1

 in al, dx ; read register #1

 and al, 10h ; mask out all but bit # 4

 cmp al, 0 ; is it 0?

 jne SwitchOn ; if not, we need to turn the LED on

SwitchOff:

 mov dx, 3BCh + 0 ; base + 0 for register #0

 in al, dx ; read the current state of the port

 and al, f7h ; clear first bit (masking)

 out dx, al ; write it out to the port

 jmp Done ; we are done

SwitchOn:

 mov dx, 3BCh + 0 ; base + 0 for register #0

 in al, dx ; read the current state of the port

 or al, 01h ; set first bit (masking)

 out dx, al ; write it out to the port

Done: pop dx ; restore the content

 pop ax ; restore the content

CheckPort endp

extern “C” CheckPort(void); // defined in

 // assembly

void main(void) {

 while(1) {

 CheckPort();

 }

}

LPT Connection Pin I/O Direction Register Address

1 Output 0th bit of register #2

2-9 Output 0th bit of register #2

14,16,17 Output 1,2,3th bit of register #2

10,11,12,13,15 Input 6,7,5,4,3th bit of register

#1

PC Parallel port

Pin 13

Pin 2

Switch

LED

106

Operating System

 Optional software layer
providing low-level services to
a program (application).

 File management, disk access

 Keyboard/display interfacing

 Scheduling multiple programs
for execution

 Or even just multiple threads from
one program

 Program makes system calls to
the OS

DB file_name “out.txt” -- store file name

MOV R0, 1324 -- system call “open” id

MOV R1, file_name -- address of file-name

INT 34 -- cause a system call

JZ R0, L1 -- if zero -> error

 . . . read the file

JMP L2 -- bypass error cond.

L1:

 . . . handle the error

L2:

10/28/2013

54

Development Environment

 Development processor

 The processor on which we write and debug our programs

 Usually a PC

 Target processor

 The processor that the program will run on in our embedded system

 Often different from the development processor

Development processor Target processor

108

Software Development Process

Compiler

Linker

C File C File Asm.

File

Binary

File

Binary

File

Binary

File

Exec.

File

Assemble

r

Library

Implementation Phase

Debugger

Profiler

Verification Phase

 Compilers

 Cross compiler

 Runs on one

processor, but

generates code

for another

 Assemblers

 Linkers

 Debuggers

 Profilers

10/28/2013

55

109

Running a Program

 If development processor is different than target,

how can we run our compiled code? Two options:

 Download to target processor

 Simulate

 Simulation

 One method: Hardware description language

 But slow, not always available

 Another method: Instruction set simulator (ISS)

 Runs on development processor, but executes instructions of

target processor

110

Instruction Set Simulator For A

Simple Processor
#include <stdio.h>

typedef struct {

 unsigned char first_byte, second_byte;

} instruction;

instruction program[1024]; //instruction memory

unsigned char memory[256]; //data memory

void run_program(int num_bytes) {

 int pc = -1;

 unsigned char reg[16], fb, sb;

 while(++pc < (num_bytes / 2)) {

 fb = program[pc].first_byte;

 sb = program[pc].second_byte;

 switch(fb >> 4) {

 case 0: reg[fb & 0x0f] = memory[sb]; break;

 case 1: memory[sb] = reg[fb & 0x0f]; break;

 case 2: memory[reg[fb & 0x0f]] =

 reg[sb >> 4]; break;

 case 3: reg[fb & 0x0f] = sb; break;

 case 4: reg[fb & 0x0f] += reg[sb >> 4]; break;

 case 5: reg[fb & 0x0f] -= reg[sb >> 4]; break;

 case 6: pc += sb; break;

 default: return –1;

}

 }

 return 0;

}

int main(int argc, char *argv[]) {

 FILE* ifs;

 If(argc != 2 ||

 (ifs = fopen(argv[1], “rb”) == NULL) {

 return –1;

 }

 if (run_program(fread(program,

 sizeof(program) == 0) {

 print_memory_contents();

 return(0);

 }

 else return(-1);

}

10/28/2013

56

111

Testing and Debugging

Implementation

Phase

Implementation

Phase

Verification

Phase

Verification

 Phase

Emulator

Debugger

/ ISS

Programmer

Development processor

(a) (b)

External tools

 ISS

 Gives us control over time – set
breakpoints, look at register
values, set values, step-by-step
execution, ...

 But, doesn’t interact with real
environment

 Download to board

 Use device programmer

 Runs in real environment, but
not controllable

 Compromise: emulator

 Runs in real environment, at
speed or near

 Supports some controllability
from the PC

112

Application-specific processors

• Programmable processor optimized for a

particular class of applications having common

characteristics
 Compromise between general-purpose and single-

purpose processors

• Features
 Program memory

 Optimized datapath

 Special functional units

• Benefits
 Some flexibility, good performance, size and power

• Drawbacks

 High NRE cost (processor and compiler)

• Examples: Microcontroller, DSP

IR PC

Registers

Custom

ALU

Datapath Controller

Program

memory

Assembly code

for:

 total = 0;

 for(i =0;i<N;i++)

 total+=M[i];

Control

logic and

State register

Data

memory

10/28/2013

57

113

Application-Specific Instruction-Set

Processors (ASIPs)

 General-purpose processors

 Sometimes too general to be effective in demanding
application

 e.g., video processing – requires huge video buffers and
operations on large arrays of data, inefficient on a GPP

 But single-purpose processor has high NRE, not
programmable

 ASIPs – targeted to a particular domain

 Contain architectural features specific to that domain

 e.g., embedded control, digital signal processing, video
processing, network processing, telecommunications, etc.

 Still programmable

114

A Common ASIP: Microcontroller

• For embedded control applications
– Reading sensors, setting actuators

– Mostly dealing with events (bits): data
is present, but not in huge amounts

– e.g., VCR, disk drive, digital camera
(assuming SPP for image
compression), washing machine,
microwave oven

•Microcontroller features
– On-chip peripherals

• Timers, analog-digital converters, serial communication, etc.

• Tightly integrated for programmer, typically part of register
space

– On-chip program and data memory

– Direct programmer access to many of the chip’s pins

– Specialized instructions for bit-manipulation and other low-
level

10/28/2013

58

115

Digital Signal Processors (DSP)

• For signal processing applications

– Large amounts of digitized data, often streaming

– Data transformations must be applied fast

– e.g., cell-phone voice filter, digital TV, music synthesizer

• DSP features

– Several instruction execution units

– Multiple-accumulate single-cycle instruction, other instrs.

– Efficient vector operations – e.g., add two arrays

• Vector ALUs, loop buffers, etc.

116

Trend: Even More Customized ASIPs

 In the past, microprocessors were acquired as chips

 Today, we increasingly acquire a processor as Intellectual
Property (IP)

 e.g., synthesizable VHDL model

 Opportunity to add a custom datapath hardware and a few
custom instructions, or delete a few instructions

 Can have significant performance, power and size impacts

 Problem: need compiler/debugger for customized ASIP

 Remember, most development uses structured languages

 One solution: automatic compiler/debugger generation

 e.g., www.tensillica.com

 Another solution: retargettable compilers

 e.g., www.improvsys.com (customized VLIW architectures)

http://www.tensillica.com/
http://www.improvsys.com/

10/28/2013

59

117

Microcontroller: ST6

• 8-bit Microcontroller

– Memories
Up to 4 Kbytes of program memory
OTP/ROM
Up to 64 bytes of RAM

– I/O Ports
Up to 20 I/O lines
Multifunctional, bi-directional I/O pins
Up to 4 high current capability I/O line

– Clock, Reset and Power Supply
Power supply operating range: 3.0V to
6V
Maximum external frequency: 8 MHz
Oscillator Safeguard (OSG) and
Backup oscillator (LFAO)
Low Voltage Detector (LVD)
2 power saving modes: WAIT and
STOP

– Interrupts
4 interrupt vectors plus NMI and RESET
Software programmable for each I/O

 I/O Ports
Up to 20 I/O lines
Multifunctional, bi-directional I/O pins
Up to 4 high current capability I/O line

 Peripherals
Watchdog timer
8-bit timer
ADC

 Instruction Set
8-bit accumulator-based architecture
40 instructions
9 addressing modes

118

Microcontroller: STR7(ARM7TDMI® core)

• STR710F Flash Microcontrollers from STMicroelectronics
combine the industry standard ARM7TDMI® RISC
microprocessor with embedded Flash and powerful
peripheral functions including, USB and CAN.

